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The process of the freezing of soils is examined with allowance for the migra- 
tion of moisture in the freezing and thaw zones. 

The laws governing the transfer of heat and moisture in finely dispersed soils have been 
the subject of a large number of theoretical studies. However, these studies have employed 
highly simplified models to describe complex phenomena. Without discussing different ap- 
proaches to the description of the freezing of finely dispersed soils (see [i, 2], etc.), we 
note only that most previous investigations did not consider the kinetics of the phase trans- 
formation and the migration of moisture in the frozen zone. Thus, characteristic features 
were excluded from examination, particularly those phenomena which govern stratification. 
The authors of [3] proposed a physically substantiated model which considers the specifics 
of phase transformation in soil (the presence of unfrozen water) and heat and mass transfer 
in the thaw and freezing zones. The goal of the present investigation is to use this model 
as a basis for studying laws governing the motion of the freezing front in finely dispersed 
soils. We also want to study the thermal and moisture structures in the transformation zone. 

In accordance with [3], we write the system of equations describing heat and moisture 
transfer in the form 

Ov = O-'-x" ?h 0x7  + e~ ~ " k =  1, 2, (1)  

OL 
- - =  g(t, W, L), 
O, (2) 

where fl = t; f2 = W; Yl = a; Y2 = D; el = K/c; e 2 = -1. 

The function g(t, W, L), determining the rate of crystallization of the water in the 
case of unidirectional freezing, can be represented in the form [4] 

g = (~J~ -- We)/T*, (3 )  

where  W e = We( t )  i s  t h e  amount  o f  u n f r o z e n  w a t e r  ( d e t e r m i n e d  on t h e  b a s i s  o f  e x p e r i m e n t a l  
data on the freezing of soil specimens). It should be noted that allowing for migrational 
phenomena in the freezing zone and thus considering the disequilibrium of the ice formation 
process in the case t < te ~ may result in a system characterized by a state in which W - W e < 
0. In contrast to melting processes (L > 0), this circumstance presumes the existence of a 
region in which no phase transformations take place, i.e., the rate of transformation becomes 
equal to zero. Allowance is made for this in the computing process when developing the pro- 
cedure for calculating the kinetic function g(t, W, L). 

Henceforth restricting ourselves to the case of the freezing of finite specimens with 
boundaries impermeable to moisture (closed system), we write the initial and boundary condi- 
tions corresponding to the problem being examined: 

�9 = 0 ,  O ~ x ~ H  t= to ,  W = W o ,  (4 )  

x----O t----h, OW O, 
"c > 0 Ox 

x H t = G ,  OW = 0 ,  
Ox 

(s) 
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Fig. i. Distribution of temperature (i), moisture (2), total moisture 
content (3), and crystallization rate (4) in the specimen, Fo = 0.2; 
Le = 0.3; Ste = 0.23; % 2 = 0.25. 

Fig. 2. Measurement of total moisture content along the specimen, Fo = 
1.8; Le = 0.3; Ste = 0.114; 82 = 0.875. 

where the subscripts 0, i, and 2 correspond, respectively, to the initial state and param- 
eters on the "upper" and "lower" boundaries of the specimen (t I < t 2 = to). 

In the numerical study of propagation of the phase front, Eqs. (i) and (2), initial con- 
ditions (4), and boundary conditions (5) were reduced by means of the transformation fl = 

8 = (t -- te~176 f2 = m = W/W0, m e = WeW0, s = L/W0, ~ = D(W)/D0, x = x/H (H is the 

specimen length) to dimensionless form: 

O 0  0 2 0  . 1 - 

o-go = + g , OF----g" Ox (~) - ~' o Fo 

F o = 0 ,  0 ~ x ~ l ,  O-----0o, o ) =  1, (7 )  

I 
x 0 O=--l, 0~ _0, 

F o > O  Ox 

= 1 O-=O~, &o_ ----0, 
Ox 

( 8 )  

where Le = D0/a; Ste = clt I - te~ g = (m - me)/Fo,; D o = D(W0); te ~ is the temperature 

at which the phase transformations begin. 

System (6) must be augmented by the relation me(B), which together with (3) determines 
the form of the kinetic function. An analysis of the empirical data on the freezing of speci- 
mens of finely dispersed soils in the temperature range At = t I - te ~ [3, 5] leads to the 
following expression for m e (8): 

% (8) = (I -- nO) -I, (9) 

where n~7.7. 

In numerically solving system (6), we used an implicit scheme of approximation involvin~ 
the use of central differences for the space coordinates and one-sided differences for time. T 

The transport coefficients Yk were referred to half-integral nodes. Thus, the error of 
approximation was of the order O(h~ + h2), where h~ and h are the time and space steps, re- 
spectively. Thus, the problem being examined is nonlinear, and in the solution of its finite 
difference analog we combined the trial run method with iterations. For faster convergence 
of the iteration process, the value of g(m, 8, s was corrected after we found each of the 
grid functions being determined. The boundary conditions for the moisture transport equation 

%In the calculations we performed, we assumed that the heat capacity and diffusivity of the 
soils were constant and were the same for the freezing and thaw zones. The dimensionless 
diffusion coefficient was determined by the expression r = m s [5]. 
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Fig. 3. Change over time in the rate of displacement (i) 
and position (2) of the thermal front, the migrative flow 
(3), and the region (8 < 0) in which phase transformations 
are absent (4), Le = 0.3; Ste = 0.23; 82 = 0.25. 

were approximated by a central difference with the use of hypothetical nodes and subsequent 
expression of the grid function at these nodes from the difference analog of the differential 
equation. Such an approach results in time coupling at the boundary nodes, produces a uniform 
scheme, and, most importantly, increases the order of the approximation. 

It is easily shown that by virtue of the finiteness of the functions g(~, %, s follow- 
ing from the formulation of the problem of phase transitions at a finite rate, the chosen 
scheme results in a well-conditioned boundary-value problem and, thus, to a unique solution 
and stable calculation [6]. Along with the above considerations, special attention must be 
given in the calculations to the independence (in the numerical sense) of the solution from 
the subdivision of the grid region. The fields in the zone of intensive phase transforma- 
tions were analyzed most intensively, since the largest gradients of the sought functions 
were to be found here. 

In order to make a detailed description of kinetic processes and analyze their effect 
on the formation of the structure of the front, the time step was made smaller than the char- 
acteristic time Fo,. The value of h~ itself was varied repeatedly. We approached the space 
step h in a similar manner. It is very important the time step chosen for the given space 
discretization does not lead to changes (at the same moments of time) in the velocity of the 
front and leaves it a finite quantity. We only want to obtain a more detailed description 
of the oscillatory process. Here, the frequency and amplitude of the velocity oscillations 
remained unchanged. It follows from the second equation of system (6) that the total mois- 

1 

ture content ]0=~ 'dE remains the same in a closed system. In dimensionless variables, 
0 

I 0 = 1 and is the initial moisture content. This quantity was checked during the computation. 
The error connected with its maximum deviation from unity was no greater than E = 6.10 -3 . 
The analysis also showed that the difference scheme is absolutely stable with a change in the 
Lewis number in the range 0 < Le < ~. However, it should be noted that the moisture trans- 
port equation becomes rigid at Le = 0. This places certain restrictions on the size of the 
time step in order to satisfy static and dynamic stability conditions [7]. 

Figure 1 shows the main characteristics of the crystallization process in a specimen at 
a fixed moment of time. We should point out the presence of the distinct zone of intensive 
phase transformations 6. Outside this zone, the crystallization rate is negligibly small. 
At the given values of the parameters (Le ~ 0.3-1.0, Ste = 0.23), the width of the transforma- 
tion zone 6 is on the order of 0.i H. This makes it impossible to represent the latter in 
the form of an infinitely thin freezing front. 

The calculations show that the temperature distribution is nearly linear outside the 
transformation region in the freezing and thaw zones. This approach to linearity is evidence 
of the quasisteady nature of the heat transfer process. The moisture content distribution is 
quite nonlinear in character and is described by an S-shaped curve having zero derivatives 
at the boundaries. It is evident from Fig. 1 that, with increasing distance from the cold 
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end, m increases monotonically to the value corresponding to the moisture content of the 
soil in the thaw zone. The region in which m changes sharply corresponds to the transforma- 
tion zone, which directs the migration of moisture from the thaw zone due to crystallization 
and the corresponding increase in the potential m. This in turn leads to an increase in the 
total moisture content m s = m + s in the frozen zone. 

The distribution of total moisture content is very complex in character - it initially 
increases with increasing distance from the cold boundary m s and then decreases to the value 
corresponding_to the equilibrium moisture content. A solid phase is absent in the range of 
x from x* to x** (x* and x** are the coordinates of the point corresponding to the beginning 
of the freezing of water in the soil and the point at which the condition m s = We) is satis- 
fied. The lack of solid phase can be attributed to the reduction in moisture content to val- 
ues below equilibrium due to the migration of moisture into the frozen zone. 

The character of distribution of temperature in the frozen and thaw zones and the mois- 
ture and ice contents are also maintained at other values of the parameters. A change in 
the latter is accompanied by restructuring of the fields of the respective quantities. In 
particular, an increase in Le leads to a slight contraction of the transformation zone, shift- 
ing of the crystallization-rate maximum toward the cold boundary, and expansion of the region 
in which phase transformations are absent at temperatures below the freezing point. Intensi- 
fication of moisture transport (an increase in Le) leads to an appreciable displacement of 
the high-ice-content region toward the cold boundary. This is evidence of possible separa- 
tion of the zone of active ice formation from the freezing front and the formation of a 
stratified texture near the oold boundary. Such a phenomenon, characteristic of both closed 
and open systems, has been observed in tests involving the freezing of specimens [2]. 

The distribution of total moisture content is significantly affected by the temperature 
head A = t 2 - t I and the initial moisture content W 0. An increase in A, as a reduction in 
Ste, leads to localization of intensive ice formation in a narrow region near the freezing 
front (Fig. 2). 

Figure 3 shows data on the velocity of the thermal front, its displacement over time, 
the migrative flow, and the difference Ax. The latter characterizes the size of the region 
in which phase transitions are absent at negative temperatures. We should point out the non- 
monotonic character of the change in the velocity of the front and the migrative flow. In 
accordance with this, there is also a change in the function ~*(Fo) (see fragment a). The 
oscillations of the quantities v and qw are evidently due to inequality of the rates of mois- 
ture and heat transfer owing to the difference in the relations a(W) and D(W). In fact, when 
the front is displaced from the cold boundary, there is a substantial reduction in moisture 
content near this boundary due to crystallization of water in the transformation zone. This 
in turn leads to a sharp reduction in the diffusion coefficient (D ~ W s) and, accordingly, 
to a reduction in the migrative flow from the thaw zone. With a constant heat flux (diffu- 
sivity is a weak function of W and we assume that a = const), a decrease in qw leads to an 
increase in the velocity of the front in the region of high moisture contents, where velocity 
again decreases. An increase in the ratio D0~ helps generate oscillations, since the reduc- 
tion in moisture content caused by crystallization is partially or completely offset by the 
flow of moisture from the thaw zone. 

The final stage of the freezing process corresponds to stoppage of the front a certain 
distance from the cold boundary. This distance depends on the temperature head and the ther- 
mophysical and migrative characteristics of the soil. Calculations show (curve 3, Fig. 3) 
that when the system attains the steady state, migration of moisture from the thaw zone near- 
ly ceases. This is also evidence by the fact that the length of the zone Ax tends toward a 
finite limit as Fo + ~. This is the zone in which phase transitions are absent in the nega- 
tive temperature region. These findings are consistent with the experimental data in [8]. 

NOTATION 

�9 , x, time and space coordinates; t, W, L, dimensionless values of temperature, moisture 
content, and ice content; c, a, D, volumetric heat capacity, diffusivity, and diffusion of 
moisture; p, density of the skeleton; We, equilibrium value of moisture content; <, enthalpy 
of phase transformations; ~,, characteristic time; 8, m, s ~, dimensionless values of tem- 
perature, moisture content, ice content, and diffusion coefficient of the moisture; Fo, Four- 
ier criterion; Ste, Stefan number; n, empirical constant. The indices 0, i, and 2 pertain 
to the initial and boundary states. 
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CONVERSE THERMAL CONDUCTIVITY PROBLEMS AND CALORIMETRY OF 

TRANSPARENT BODIES 

N. V. Shumakov, I. V. Elagin, B. B. Meshkov, 
P. P. Yakovlev 

UDC 536.6:535 

The problem of measuring temperature of transparent bodies can be solved by 
use of transparent thin film resistance thermometers. Such sensors have been 
developed using tin and indium oxide. They are used to perform calorimetry 
of the properties of partially transparent bodies and laser radiation. 

Colorimetry consists of methods for measuring the thermal effects accompanying physical, 
chemical, and biological processes. For the present we will understand this term to mean 
methods for determining the thermophysical properties of transparent bodies,* together with 
methods for determining energy characteristics of radiation. 

The characteristics of laser radiation are most often determined by calorimeters with 
a load (calorimetric body) consisting of a more or less perfect ideal black body model [i]. 
In some cases it is desirable to use a completely or partially transparent colorimetric body, 
although problems then develop in measuring its temperature. If the temperature sensor has 
thermophysical and optical characteristics differing from those of the body whose temperature 
is to be measured, then the presence of other surrounding bodies with different temperatures, 
or the presence of radiation, either one cannot in principle measure the temperature of the 
given transparent body, or that measurement will require introduction of corrections which 
often are of significant complexity [2]. The difficulties in temperature measurement in- 
crease when the energy transport process is of a transient nature. In this case the correc- 
tions to the measurement may exceed the level of the temperature itself and change their al- 
gebraic sign in various stages of the process [3]. Thus, in recent years there has been a 
deliberate search for methods of measuring the temperature of transparent bodies. It is ob- 
vious that for this purpose one may use any phenomenon in which any optical or electrical 
characteristic of a substance changes with temperature [4-7]. 

One possibility for measuring temperature of transparent bodies reduces to creation and 
use of conductive thin-film coatings of a material transparent to the given kind of radiation, 
which are deposited on the surface of the body. Such thin conductive films can be used as 

*The concept of a "transparent" body is an idealization. Herein by transparent we will under- 
stand bodies in which absorption of some portion of the passing radiation does occur. 
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